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Diagram 1: View of a signal in the time and

frequency domain

A discrete Fourier analysis of a

sum of cosine waves at 10, 20, 30,

40, and 50 Hz

A fast Fourier transform (FFT) is an algorithm that samples a signal over a period of time (or space) and

divides it into its frequency components.[1] These components are single sinusoidal oscillations at distinct

frequencies each with their own amplitude and phase. This transformation is illustrated in Diagram 1. Over

the time period measured, the signal contains 3 distinct dominant frequencies.

An FFT algorithm computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IFFT).

Fourier analysis converts a signal from its original domain to a representation in the frequency domain and

vice versa. An FFT rapidly computes such transformations by factorizing the DFT matrix into a product of

sparse (mostly zero) factors.[2] As a result, it manages to reduce the complexity of computing the DFT from

O(n^{2}), which arises if one simply applies the definition of DFT, to O(n\log , where 
n
 is the data size.

Fast Fourier transforms are widely used for many applications in engineering, science, and mathematics. The

basic ideas were popularized in 1965, but some algorithms had been derived as early as 1805.[3] In 1994,

Gilbert Strang described the FFT as "the most important numerical algorithm of our lifetime"[4][5] and it was

included in Top 10 Algorithms of 20th Century by the IEEE journal Computing in Science & Engineering.[6]

Fast Fourier transform - Wikipedia https://en.wikipedia.org/wiki/Fast_Fourier_transform

1 of 13 06-02-2018, 08:13 PM



Contents

1 Overview

2 History

3 Definition and speed

4 Algorithms

4.1 Cooley–Tukey algorithm

4.2 Other FFT algorithms

5 FFT algorithms specialized for real and/or symmetric data

6 Computational issues

6.1 Bounds on complexity and operation counts

6.2 Approximations

6.3 Accuracy

7 Multidimensional FFTs

8 Other generalizations

9 Applications

10 Research areas

11 Language reference

12 See also

13 References

14 Further reading

15 External links

Overview[edit]

This section needs additional citations for verification. Please help improve this article by adding

citations to reliable sources. Unsourced material may be challenged and removed. (November 2017)

(Learn how and when to remove this template message)

There are many different FFT algorithms based on a wide range of published theories, from simple complex-

number arithmetic to group theory and number theory; this article gives an overview of the available

techniques and some of their general properties, while the specific algorithms are described in subsidiary

articles linked below.

The DFT is obtained by decomposing a sequence of values into components of different frequencies.[3] This

operation is useful in many fields (see discrete Fourier transform for properties and applications of the

transform) but computing it directly from the definition is often too slow to be practical. An FFT is a way to

compute the same result more quickly: computing the DFT of N points in the naive way, using the definition,

takes O(N2) arithmetical operations, while an FFT can compute the same DFT in only O(N log N) operations.

The difference in speed can be enormous, especially for long data sets where N may be in the thousands or

millions. In practice, the computation time can be reduced by several orders of magnitude in such cases, and

the improvement is roughly proportional to N / log N. This huge improvement made the calculation of the

DFT practical; FFTs are of great importance to a wide variety of applications, from digital signal processing

and solving partial differential equations to algorithms for quick multiplication of large integers.

The best-known FFT algorithms depend upon the factorization of N, but there are FFTs with O(N log N)

complexity for all N, even for prime N. Many FFT algorithms only depend on the fact that {\displaystyle  is an N-th
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primitive root of unity, and thus can be applied to analogous transforms over any finite field, such as number-

theoretic transforms. Since the inverse DFT is the same as the DFT, but with the opposite sign in the

exponent and a 1/N factor, any FFT algorithm can easily be adapted for it.

History[edit]

The development of fast algorithms for DFT can be traced to Gauss's unpublished work in 1805 when he

needed it to interpolate the orbit of asteroids Pallas and Juno from sample observations.[7][8] His method was

very similar to the one published in 1965 by Cooley and Tukey, who are generally credited for the invention

of the modern generic FFT algorithm. While Gauss's work predated even Fourier's results in 1822, he did not

analyze the computation time and eventually used other methods to achieve his goal.

Between 1805 and 1965, some versions of FFT were published by other authors. Yates in 1932 published his

version called interaction algorithm, which provided efficient computation of Hadamard and Walsh

transforms.[9] Yates' algorithm is still used in the field of statistical design and analysis of experiments. In

1942, Danielson and Lanczos published their version to compute DFT for x-ray crystallography, a field

where calculation of Fourier transforms presented a formidable bottleneck.[10][11] While many methods in

the past had focused on reducing the constant factor for O(n^{2}) computation by taking advantage of

symmetries, Danielson and Lanczos realized that one could use the periodicity and apply a "doubling trick" to

get O(n\log  runtime.[12]

Cooley and Tukey published a more general version of FFT in 1965 that is applicable when N is composite

and not necessarily a power of 2.[13] Tukey came up with the idea during a meeting of President Kennedy's

Science Advisory Committee where a discussion topic involved detecting nuclear tests by the Soviet Union

by setting up sensors to surround the country from outside. To analyze the output of these sensors, a fast

Fourier transform algorithm would be needed. In discussion with Tukey, Richard Garwin recognized the

general applicability of the algorithm not just to national security problems, but also to a wide range of

problems including one of immediate interest to him, determining the periodicities of the spin orientations in

a 3-D crystal of Helium-3.[14] Garwin gave Tukey's idea to Cooley (both worked at IBM's Watson labs) for

implementation.[15] Cooley and Tukey published the paper in a relatively short six months.[16] As Tukey

didn't work at IBM, the patentability of the idea was doubted and the algorithm went into the public domain,

which, through the computing revolution of the next decade, made FFT one of the indispensable algorithms

in digital signal processing.

Definition and speed[edit]

An FFT computes the DFT and produces exactly the same result as evaluating the DFT definition directly;

the most important difference is that an FFT is much faster. (In the presence of round-off error, many FFT

algorithms are also much more accurate than evaluating the DFT definition directly, as discussed below.)

Let x0, ...., xN−1 be complex numbers. The DFT is defined by the formula

{\displaystyle X_{k}=\sum 

_{n=0}^{N-1}x_{n}e^{-i2\pi kn/N}\qquad 

k=0,\dots ,N-1.}

Evaluating this definition directly requires O(N2) operations: there are N outputs Xk, and each output requires
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a sum of N terms. An FFT is any method to compute the same results in O(N log N) operations. All known

FFT algorithms require Θ(N log N) operations, although there is no known proof that a lower complexity

score is impossible.[17]

To illustrate the savings of an FFT, consider the count of complex multiplications and additions. Evaluating

the DFT's sums directly involves N2 complex multiplications and N(N−1) complex additions, of which O(N)

operations can be saved by eliminating trivial operations such as multiplications by 1. The radix-2 Cooley–

Tukey algorithm, for N a power of 2, can compute the same result with only (N/2)log2(N) complex

multiplications (again, ignoring simplifications of multiplications by 1 and similar) and N log2(N) complex

additions. In practice, actual performance on modern computers is usually dominated by factors other than

the speed of arithmetic operations and the analysis is a complicated subject (see, e.g., Frigo & Johnson,

2005),[18] but the overall improvement from O(N2) to O(N log N) remains.

Algorithms[edit]

Cooley–Tukey algorithm[edit]

Main article: Cooley–Tukey FFT algorithm

By far the most commonly used FFT is the Cooley–Tukey algorithm. This is a divide and conquer algorithm

that recursively breaks down a DFT of any composite size N = N1N2 into many smaller DFTs of sizes N1 and

N2, along with O(N) multiplications by complex roots of unity traditionally called twiddle factors (after

Gentleman and Sande, 1966[19]).

This method (and the general idea of an FFT) was popularized by a publication of J. W. Cooley and J. W.

Tukey in 1965,[13] but it was later discovered[3] that those two authors had independently re-invented an

algorithm known to Carl Friedrich Gauss around 1805[20] (and subsequently rediscovered several times in

limited forms).

The best known use of the Cooley–Tukey algorithm is to divide the transform into two pieces of size N/2 at

each step, and is therefore limited to power-of-two sizes, but any factorization can be used in general (as was

known to both Gauss and Cooley/Tukey[3]). These are called the radix-2 and mixed-radix cases,

respectively (and other variants such as the split-radix FFT have their own names as well). Although the basic

idea is recursive, most traditional implementations rearrange the algorithm to avoid explicit recursion. Also,

because the Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily with

any other algorithm for the DFT, such as those described below.

Other FFT algorithms[edit]

Main articles: Prime-factor FFT algorithm, Bruun's FFT algorithm, Rader's FFT algorithm, Bluestein's FFT

algorithm, and Hexagonal Fast Fourier Transform

There are other FFT algorithms distinct from Cooley–Tukey.

Cornelius Lanczos did pioneering work on the FFT and FFS (Fast Fourier Sampling method) with G. C.

Danielson (1940).
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For N = N1N2 with coprime N1 and N2, one can use the prime-factor (Good–Thomas) algorithm (PFA), based

on the Chinese remainder theorem, to factorize the DFT similarly to Cooley–Tukey but without the twiddle

factors. The Rader–Brenner algorithm (1976)[21] is a Cooley–Tukey-like factorization but with purely

imaginary twiddle factors, reducing multiplications at the cost of increased additions and reduced numerical

stability; it was later superseded by the split-radix variant of Cooley–Tukey (which achieves the same

multiplication count but with fewer additions and without sacrificing accuracy). Algorithms that recursively

factorize the DFT into smaller operations other than DFTs include the Bruun and QFT algorithms. (The

Rader–Brenner[21] and QFT algorithms were proposed for power-of-two sizes, but it is possible that they

could be adapted to general composite n. Bruun's algorithm applies to arbitrary even composite sizes.)

Bruun's algorithm, in particular, is based on interpreting the FFT as a recursive factorization of the

polynomial zN − 1, here into real-coefficient polynomials of the form zM − 1 and z2M + azM + 1.

Another polynomial viewpoint is exploited by the Winograd FFT algorithm,[22][23] which factorizes zN − 1

into cyclotomic polynomials—these often have coefficients of 1, 0, or −1, and therefore require few (if any)

multiplications, so Winograd can be used to obtain minimal-multiplication FFTs and is often used to find

efficient algorithms for small factors. Indeed, Winograd showed that the DFT can be computed with only

O(N) irrational multiplications, leading to a proven achievable lower bound on the number of multiplications

for power-of-two sizes; unfortunately, this comes at the cost of many more additions, a tradeoff no longer

favorable on modern processors with hardware multipliers. In particular, Winograd also makes use of the

PFA as well as an algorithm by Rader for FFTs of prime sizes.

Rader's algorithm, exploiting the existence of a generator for the multiplicative group modulo prime N,

expresses a DFT of prime size n as a cyclic convolution of (composite) size N−1, which can then be

computed by a pair of ordinary FFTs via the convolution theorem (although Winograd uses other convolution

methods). Another prime-size FFT is due to L. I. Bluestein, and is sometimes called the chirp-z algorithm; it

also re-expresses a DFT as a convolution, but this time of the same size (which can be zero-padded to a

power of two and evaluated by radix-2 Cooley–Tukey FFTs, for example), via the identity

{\displaystyle nk=-{\frac 

{(k-n)^{2}}{2}}+{\frac 

Hexagonal Fast Fourier Transform aims at computing an efficient FFT for the hexagonally sampled data by

using a new addressing scheme for hexagonal grids, called Array Set Addressing (ASA).

FFT algorithms specialized for real and/or symmetric data[edit]

In many applications, the input data for the DFT are purely real, in which case the outputs satisfy the

symmetry

X_{N-k}=X_{k}^{*}

and efficient FFT algorithms have been designed for this situation (see e.g. Sorensen, 1987).[24][25] One

approach consists of taking an ordinary algorithm (e.g. Cooley–Tukey) and removing the redundant parts of

the computation, saving roughly a factor of two in time and memory. Alternatively, it is possible to express

an even-length real-input DFT as a complex DFT of half the length (whose real and imaginary parts are the

even/odd elements of the original real data), followed by O(N) post-processing operations.

It was once believed that real-input DFTs could be more efficiently computed by means of the discrete
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Unsolved problem in

computer science:

What is the lower bound

on the complexity of fast

Fourier transform

algorithms? Can they be

faster than O(N log N)?

(more unsolved problems in

computer science)

Hartley transform (DHT), but it was subsequently argued that a specialized real-input DFT algorithm (FFT)

can typically be found that requires fewer operations than the corresponding DHT algorithm (FHT) for the

same number of inputs. Bruun's algorithm (above) is another method that was initially proposed to take

advantage of real inputs, but it has not proved popular.

There are further FFT specializations for the cases of real data that have even/odd symmetry, in which case

one can gain another factor of (roughly) two in time and memory and the DFT becomes the discrete

cosine/sine transform(s) (DCT/DST). Instead of directly modifying an FFT algorithm for these cases,

DCTs/DSTs can also be computed via FFTs of real data combined with O(N) pre/post processing.

Computational issues[edit]

Bounds on complexity and operation counts[edit]

A fundamental question of longstanding theoretical interest is to prove

lower bounds on the complexity and exact operation counts of fast

Fourier transforms, and many open problems remain. It is not even

rigorously proved whether DFTs truly require Ω(N log N) (i.e., order

N log N or greater) operations, even for the simple case of power of

two sizes, although no algorithms with lower complexity are known. In

particular, the count of arithmetic operations is usually the focus of

such questions, although actual performance on modern-day computers

is determined by many other factors such as cache or CPU pipeline

optimization.

Following pioneering work by Winograd (1978),[22] a tight Θ(N) lower

bound is known for the number of real multiplications required by an FFT. It can be shown that only

{\displaystyle 4N-2\log  irrational real multiplications are required to compute a DFT of power-of-

two length N=2^{m}. Moreover, explicit algorithms that achieve this count are known (Heideman & Burrus,

1986;[26] Duhamel, 1990[27]). Unfortunately, these algorithms require too many additions to be practical, at

least on modern computers with hardware multipliers (Duhamel, 1990;[27] Frigo & Johnson, 2005).[18]

A tight lower bound is not known on the number of required additions, although lower bounds have been

proved under some restrictive assumptions on the algorithms. In 1973, Morgenstern[28] proved an Ω(N log N)

lower bound on the addition count for algorithms where the multiplicative constants have bounded

magnitudes (which is true for most but not all FFT algorithms). This result, however, applies only to the

unnormalized Fourier transform (which is a scaling of a unitary matrix by a factor of {\sqrt ), and does not

explain why the Fourier matrix is harder to compute than any other unitary matrix (including the identity

matrix) under the same scaling. Pan (1986)[29] proved an Ω(N log N) lower bound assuming a bound on a

measure of the FFT algorithm's "asynchronicity", but the generality of this assumption is unclear. For the case

of power-of-two N, Papadimitriou (1979)[30] argued that the number N\log  of complex-number additions

achieved by Cooley–Tukey algorithms is optimal under certain assumptions on the graph of the algorithm

(his assumptions imply, among other things, that no additive identities in the roots of unity are exploited).

(This argument would imply that at least 2N\log  real additions are required, although this is not a tight

bound because extra additions are required as part of complex-number multiplications.) Thus far, no

published FFT algorithm has achieved fewer than N\log  complex-number additions (or their equivalent)
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for power-of-two N.

A third problem is to minimize the total number of real multiplications and additions, sometimes called the

"arithmetic complexity" (although in this context it is the exact count and not the asymptotic complexity that

is being considered). Again, no tight lower bound has been proven. Since 1968, however, the lowest

published count for power-of-two N was long achieved by the split-radix FFT algorithm, which requires

4N\log _{2}N-6N+8  real multiplications and additions for N > 1. This was recently reduced to

\sim {\frac 

{34}{9}}N\log 
 (Johnson and Frigo, 2007;[17] Lundy and Van Buskirk, 2007[31]). A slightly larger count

(but still better than split radix for N≥256) was shown to be provably optimal for N≤512 under additional

restrictions on the possible algorithms (split-radix-like flowgraphs with unit-modulus multiplicative factors),

by reduction to a satisfiability modulo theories problem solvable by brute force (Haynal & Haynal, 2011).[32]

Most of the attempts to lower or prove the complexity of FFT algorithms have focused on the ordinary

complex-data case, because it is the simplest. However, complex-data FFTs are so closely related to

algorithms for related problems such as real-data FFTs, discrete cosine transforms, discrete Hartley

transforms, and so on, that any improvement in one of these would immediately lead to improvements in the

others (Duhamel & Vetterli, 1990).[33]

Approximations[edit]

All of the FFT algorithms discussed above compute the DFT exactly (i.e. neglecting floating-point errors). A

few "FFT" algorithms have been proposed, however, that compute the DFT approximately, with an error that

can be made arbitrarily small at the expense of increased computations. Such algorithms trade the

approximation error for increased speed or other properties. For example, an approximate FFT algorithm by

Edelman et al. (1999)[34] achieves lower communication requirements for parallel computing with the help of

a fast multipole method. A wavelet-based approximate FFT by Guo and Burrus (1996)[35] takes sparse

inputs/outputs (time/frequency localization) into account more efficiently than is possible with an exact FFT.

Another algorithm for approximate computation of a subset of the DFT outputs is due to Shentov et al.

(1995).[36] The Edelman algorithm works equally well for sparse and non-sparse data, since it is based on the

compressibility (rank deficiency) of the Fourier matrix itself rather than the compressibility (sparsity) of the

data. Conversely, if the data are sparse—that is, if only K out of N Fourier coefficients are nonzero—then the

complexity can be reduced to O(K log(N)log(N/K)), and this has been demonstrated to lead to practical

speedups compared to an ordinary FFT for N/K > 32 in a large-N example (N = 222) using a probabilistic

approximate algorithm (which estimates the largest K coefficients to several decimal places).[37]

Accuracy[edit]

Even the "exact" FFT algorithms have errors when finite-precision floating-point arithmetic is used, but these

errors are typically quite small; most FFT algorithms, e.g. Cooley–Tukey, have excellent numerical properties

as a consequence of the pairwise summation structure of the algorithms. The upper bound on the relative

error for the Cooley–Tukey algorithm is O(ε log N), compared to O(εN3/2) for the naïve DFT formula,[19]

where ε is the machine floating-point relative precision. In fact, the root mean square (rms) errors are much

better than these upper bounds, being only O(ε √log N) for Cooley–Tukey and O(ε √N) for the naïve DFT

(Schatzman, 1996).[38] These results, however, are very sensitive to the accuracy of the twiddle factors used

in the FFT (i.e. the trigonometric function values), and it is not unusual for incautious FFT implementations

to have much worse accuracy, e.g. if they use inaccurate trigonometric recurrence formulas. Some FFTs other
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than Cooley–Tukey, such as the Rader–Brenner algorithm, are intrinsically less stable.

In fixed-point arithmetic, the finite-precision errors accumulated by FFT algorithms are worse, with rms

errors growing as O(√N) for the Cooley–Tukey algorithm (Welch, 1969).[39] Moreover, even achieving this

accuracy requires careful attention to scaling to minimize loss of precision, and fixed-point FFT algorithms

involve rescaling at each intermediate stage of decompositions like Cooley–Tukey.

To verify the correctness of an FFT implementation, rigorous guarantees can be obtained in O(N log N) time

by a simple procedure checking the linearity, impulse-response, and time-shift properties of the transform on

random inputs (Ergün, 1995).[40]

Multidimensional FFTs[edit]

As defined in the multidimensional DFT article, the multidimensional DFT

X_{\mathbf {k} }=\sum 

_{\mathbf {n} 

=0}^{\mathbf {N} 

transforms an array xn with a d-dimensional vector of indices \mathbf {n}  by a set of d nested

summations (over n_{j}=0\ldots  for each j), where the division n/N, defined as

\mathbf {n} /\mathbf {N} , is performed element-wise. Equivalently, it is the composition of a sequence

of d sets of one-dimensional DFTs, performed along one dimension at a time (in any order).

This compositional viewpoint immediately provides the simplest and most common multidimensional DFT

algorithm, known as the row-column algorithm (after the two-dimensional case, below). That is, one simply

performs a sequence of d one-dimensional FFTs (by any of the above algorithms): first you transform along

the n1 dimension, then along the n2 dimension, and so on (or actually, any ordering works). This method is

easily shown to have the usual O(N log N) complexity, where N=N_{1}\cdot  is the total number of

data points transformed. In particular, there are N/N1 transforms of size N1, etcetera, so the complexity of the

sequence of FFTs is:

{\displaystyle {\begin{aligned}&{\frac 

{N}{N_{1}}}O(N_{1}\log N_{1})+\cdots +{\frac 

{N}{N_{d}}}O(N_{d}\log 

N_{d})\\[6pt]={}&O\left(N\left[\log 

In two dimensions, the xk can be viewed as an 
n_{1}\times 

matrix, and this algorithm corresponds to first

performing the FFT of all the rows (resp. columns), grouping the resulting transformed rows (resp. columns)

together as another 
n_{1}\times 

 matrix, and then performing the FFT on each of the columns (resp. rows) of this

second matrix, and similarly grouping the results into the final result matrix.

In more than two dimensions, it is often advantageous for cache locality to group the dimensions recursively.

For example, a three-dimensional FFT might first perform two-dimensional FFTs of each planar "slice" for

each fixed n1, and then perform the one-dimensional FFTs along the n1 direction. More generally, an

asymptotically optimal cache-oblivious algorithm consists of recursively dividing the dimensions into two

groups (n_{1},\ldots  and (n_{d/2+1},\ldots  that are transformed recursively (rounding if d is not even) (see

Frigo and Johnson, 2005).[18] Still, this remains a straightforward variation of the row-column algorithm that
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ultimately requires only a one-dimensional FFT algorithm as the base case, and still has O(N log N)

complexity. Yet another variation is to perform matrix transpositions in between transforming subsequent

dimensions, so that the transforms operate on contiguous data; this is especially important for out-of-core and

distributed memory situations where accessing non-contiguous data is extremely time-consuming.

There are other multidimensional FFT algorithms that are distinct from the row-column algorithm, although

all of them have O(N log N) complexity. Perhaps the simplest non-row-column FFT is the vector-radix FFT

algorithm, which is a generalization of the ordinary Cooley–Tukey algorithm where one divides the transform

dimensions by a vector \mathbf {r}  of radices at each step. (This may also have cache benefits.) The

simplest case of vector-radix is where all of the radices are equal (e.g. vector-radix-2 divides all of the

dimensions by two), but this is not necessary. Vector radix with only a single non-unit radix at a time, i.e.

\mathbf {r} =(1,\ldots , is essentially a row-column algorithm. Other, more complicated, methods include

polynomial transform algorithms due to Nussbaumer (1977),[41] which view the transform in terms of

convolutions and polynomial products. See Duhamel and Vetterli (1990)[33] for more information and

references.

Other generalizations[edit]

An O(N5/2log N) generalization to spherical harmonics on the sphere S2 with N2 nodes was described by

Mohlenkamp,[42] along with an algorithm conjectured (but not proven) to have O(N2 log2(N)) complexity;

Mohlenkamp also provides an implementation in the libftsh library.[43] A spherical-harmonic algorithm with

O(N2log N) complexity is described by Rokhlin and Tygert.[44]

The fast folding algorithm is analogous to the FFT, except that it operates on a series of binned waveforms

rather than a series of real or complex scalar values. Rotation (which in the FFT is multiplication by a

complex phasor) is a circular shift of the component waveform.

Various groups have also published "FFT" algorithms for non-equispaced data, as reviewed in Potts et al.

(2001).[45] Such algorithms do not strictly compute the DFT (which is only defined for equispaced data), but

rather some approximation thereof (a non-uniform discrete Fourier transform, or NDFT, which itself is often

computed only approximately). More generally there are various other methods of spectral estimation.

Applications[edit]

FFT's importance derives from the fact that in signal processing and image processing it has made working in

frequency domain equally computationally feasible as working in temporal or spatial domain. Some of the

important applications of FFT includes,[16][46]

Fast large integer and polynomial multiplication

Efficient matrix-vector multiplication for Toeplitz, circulant and other structured matrices

Filtering algorithms

Fast algorithms for discrete cosine or sine transforms (example, Fast DCT used for JPEG, MP3/MPEG

encoding)

Fast Chebyshev approximation

Fast discrete Hartley transform

Solving difference equations
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Computation of isotopic distributions.[47]

Research areas[edit]

Big FFTs: With the explosion of big data in fields such as astronomy, the need for 512k FFTs has

arisen for certain interferometry calculations. The data collected by projects such as MAP and LIGO

require FFTs of tens of billions of points. As this size does not fit into main memory, so called out-of-

core FFTs are an active area of research.[48]

Approximate FFTs: For applications such as MRI, it is necessary to compute DFTs for nonuniformly

spaced grid points and/or frequencies. Multipole based approaches can compute approximate quantities

with factor of runtime increase.[49]

Group FFTs: The FFT may also be explained and interpreted using group representation theory that

allows for further generalization. A function on any compact group, including non cyclic, has an

expansion in terms of a basis of irreducible matrix elements. It remains active area of research to find

efficient algorithm for performing this change of basis. Applications including efficient spherical

harmonic expansion, analyzing certain markov processes, robotics etc.[50]

Quantum FFTs: Shor's fast algorithm for integer factorization on a quantum computer has a

subroutine to compute DFT of a binary vector. This is implemented as sequence of 1- or 2-bit quantum

gates now known as quantum FFT, which is effectively the Cooley–Tukey FFT realized as a particular

factorization of the Fourier matrix. Extension to these ideas is currently being explored.

Language reference[edit]

Language Command/Method Pre-requisites

R stats::fft(x) None

Octave/MATLAB fft(x) None

Python fft.fft(x) numpy

Mathematica Fourier[x] None

Julia fft(A [,dims]) None

See also[edit]

FFT-related algorithms:

Cooley–Tukey FFT algorithm

Prime-factor FFT algorithm

Bruun's FFT algorithm

Rader's FFT algorithm

Bluestein's FFT algorithm

Goertzel algorithm – Computes individual terms of discrete Fourier transform

FFT implementations:

ALGLIB – C++ and C# library with real/complex FFT implementation.

FFTW "Fastest Fourier Transform in the West" – C library for the discrete Fourier transform (DFT) in
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one or more dimensions.

FFTS – The Fastest Fourier Transform in the South.

FFTPACK – another Fortran FFT library (public domain)

Math Kernel Library

Other links:

Overlap add/Overlap save – efficient convolution methods using FFT for long signals

Odlyzko–Schönhage algorithm applies the FFT to finite Dirichlet series.

Schönhage–Strassen algorithm - asymptotically fast multiplication algorithm for large integers

Butterfly diagram – a diagram used to describe FFTs.

Spectral music (involves application of FFT analysis to musical composition)

Spectrum analyzer – any of several devices that perform an FFT

Time series

Fast Walsh–Hadamard transform

Generalized distributive law

Multidimensional transform

Multidimensional discrete convolution

DFT matrix
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